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An analysis is made of the problem of the heating and cooling of a metal product 
moving through two sequentially arranged chambers containing a fluidized bed in 
the presence of a return flow of heat by thermal conduction along the axis of the 
product. 

As shown by an experiment on the industrial exploitation of conveyer muffle furnaces con, 
raining fluidized beds for the thermal treatment of pipes [i, 2], with the help of automatic 
regulators different temperatures (800-II00~ are stably maintained in different zones of 
the furnace even without the presence of transverse partitions between them. Almost any 
given temperature drop can be obtained in the presence of partitions between the zones. In 
this connection the thermal treatment of metal products in accordance with a complicated 
schedule, such as heating--cooling, can be accomplished in conveyer furnaces containing fluid- 
ized beds. 

If the thermal conductivity of the metal is high enough the rate of cooling of the sec- 
tion of a long pipe (or rod) entering the cooling zone from the heating zone can differ from 
the rate of cooling of a short segment of the same pipe carried from one zone to the other. 
In a number of cases, such as in the presence of hardening, the high thermal conductivity of 
the metal, especially with large pipe or rod cross sections, can lead to a marked decrease in 
the cooling rate in conveyer assemblies in comparison with the rate obtained on separate spec- 
imens. 

Heating and cooling under the conditions described are analyzed in the present article. 
The following assumptions are adopted in the solution of the stated problem. 

A product of infinite length (pipe, rod, billet, etc.) moves through a heating zone with 
a constant bed temperature t~ along the length Z h and a cooling zone with a constant bed tem- 
perature t~ along the length I c. We assume that the process is established in the sense that 
the temperatures in each section of the assembly are taken as independent of time. The prod- 
uct is assumed to be a thin body in thermal engineering terms, which allows one to neglect 
the temperature variation in its cross section. In the definitions adopted in Fig. i the 
process is described by equations obtained on the assumption of constancy of all the thermal 
engineering constants [3]. 

In the heating zone 

In the cooling zone 

de~h A d~h Bh~h= O. (1) 
dx ~ dx 

dY'0'c A d~:c Bc~c= 0. (2) 
dx 2 dx 

In the sections where heat exchange with the product is practically absent (before the as- 
sembly, in the intermediate wall, and after the furnace), the temperature field in the prod- 
uct is obtained by the equation 

d~-~t - -  A dt = O. (3) 
dx ~ dx 
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Fig. I. Temperature variation of an infinitely 
long product moving through heating and cooling 
chambers in the presence of a return flow of heat 
by thermal conduction along the axis of the product. 

Since in the problem under consideration the temperature and the heat flux transferred 
by thermal conduction along the axis of the product must be continuous functions of x, Eqs. 
(i), (2), and (3) are interconnected by the conditions of equality of the temperatures and 
of their derivatives with respect to x at the junctions of the zones, i.e., at x h = 0, x h = 
~h, and x c = 0. As additional boundary conditions we assume that 

th~tini t  and ~ ~ O, at Xh~ - -  oo, 
dx 

dt (4) 
at X - - o o .  - -  ~ O, 

c dx 

With the boundary conditions (4) it follows from (3) that dt/dx = 0 for all x > (lh + s + Ic). 
Physically this means that in the absence of heat transfer from the product to the surround- 
ing medium at the exit from the assembly the heat flux along it equals zero, With I # 0 this 
signifies the absence of a temperature gradient. In this connection one can write 

dt 
- -  0 at. X c _ - - / e  . (4') 

dx 

At the entrance to the assembly all the heat entering through thermal conduction counter 
to the moving product goes into heating it, and therefore 

dt I = O. (5) 

]! t In order to simplify the calculations we will first take t~, th, and t c as known quanti- 
ties and then find them by equating the corresponding solutions to each other. We introduce 
the dimensionless quantities 

Bh _ ahP~, ; (6) 
~ h - -  A 2 F (c,ow) 2 

B h ahPlh . 
6h = ~ l h - -  Fcp~ ' (7)  

Xh_ Xh ( 8 )  
th 

Then the solution of Eq. (i) with 

X'h=O % = ~ h ;  X h = l  O h = ~ '  h 
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will have the form 

X{1--exp(- - -~h] / l - :  4 x p ~ ) } - l +  - - [ - - @ ~ | / 1 =  4~h(1 

• 2~-h (1 lv-4,h--1)~ 'h 1--exp - - ~ l / l + 4 , h  . 
(9) 

Calculations show that ~h/~h >> 1 in the majority of cases of heating. Under these condi- 
tions the second term in the denominator of Eq. (9) is equal to zero and the equation for O h 
is considerably simplified. 

Usually the criterion 8h varies in the range of 1.5-5.0, and therefore ~h << i. By ex- 
panding /i + 4~h in a series and keeping only the first two terms one can obtain in place of 
(9) 

O h --~ Ohexp (-- 6hXh). (10) 

In this case at the end of the heating zone (at X h = i) we will have 

O~ a• _ O~xp (-- Sh)- (11) 
Here it was considered that Oh'<<O; and therefore the first term in Eq. (9) can be neglected 
in comparison with the second for all values of X h much smaller than unity. As X § i, how- 
ever, the second term in Eq. (9) approaches zero and the exponent of the first term approaches 
unity, and therefore it cannot be neglected, since in this case Oh=O ~. Actually, Eqs. (_i0)- 
(ii) correspond to the case of heating of a product with % = 0; they cannot be usedwhenXh= i. 

By finding dt/dx from Eq. (9), substituting the value found into (5), and performing a 
series of transformations with allowance for the fact that 8h/~h >> 1 while exp (--~h/~h) and 

exp [--(6h/~h)/l + 4~h] are small in comparison with exp (Sh/~h)/l + 4~h , we obtain an expres- 
sion for computing th': 

%ni  1---i-- 
l+~h (12) 

The temperature th" does not enter into Eq. (12). Physically, this means that the conditions 
of heat exchange at the end of the heating zone have almost no effect on the temperature 
gradient at its entrance. 

The solution of Eq. (2) with 

xo=o  c=1 
for the cooling zone will have the form 

x - V c  6c VC(I -- R e) ] 
I exp --~c (13) O c = O~ exp [ 6c (V-c-  1)N" c 1 + 1/-c 

2'c 1 -- l/C 1 exp( 6c - )  
1 + V-c - - , c  KC 

Here r = r + 4~ c. 

Since for the cooling of metal products in conveyer assemblies in practice the cooling 
zone is taken as rather large, while ~o/2~o >> i, i.e., exp [--(~c/~c)r = 0, Eq. (13) can be 
simplified, since the denominator will equal unity, while the second term in the numerator 
equals zero. Then the equation takes the form 

~r 2~c~C (~_ i)] ~e. (14) 

If X = 0, then we obtain the usual expression 
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~c ~ ~c exp (--  6cXc). (15) 

The temperature distribution at the end of the heating section and at the start of the 
cooling section is of the greatest interest for an analysis of the hardening process, since 
the temperature t c' at the entrance to the cooling zone when the thermal conductivity of the 
product is high will theoretically always be lower than the maximum heating temperature t~ ax 
of the product, as is seen from Fig. i. In this connection it is interesting to determine 
at what distance from the start of the heating zone one observes the maximum temperature t~ ax 
of the product and how sharply its temperature decreases in the initial section of the cool- 
ing chamber. 

By differentiating Eq. (14) and substituting Xc = 0 after the differentiation we will 
have 

dtc %=0 dt~c I = , 6.c ( V - c - -  1). ( 1 6 )  
dx -- dx I%=o - - ~ c  2~ c 

Taking the derivative dt/dx at Xh = 1 from Eq. (9), we obtain 

dxdlhl2-h=l = d~hdx 2-h=l = ~hf ,,6-~h (|/-H- --1) @ 

-4- 1)exp ( (17) 

For simplicity we will take the thickness s of the partition between chamhers as equal 
�9 = tc ~ and to zero Equating the derivatives from (16) and (17) under the condition that th" 

neglecting exp (--~h/~hCH), we obtain 

~C -- }--1 i- 1 (18) 

Equation (18) is simplified if r = r 4~ h and ~ = ~i + 4~ c are expanded in series, keep- 
ing only the first two terms: 

1 + 1  +tb.% 1 
c 5h 42 exp (--5 h) 

& = 4 =  - ' - - - .  ( 1 4_ 1 ) +  5c (19) 
~h 5h 

In furnaces in which the temperature of the medium does not greatly exceed the maximum 
temperature of the product (which is characteristic for furnaces containing fluidized beds), 
and even more when a technological holding time is necessary, ~h >> i. Under these condi- 
tions the last term in Eq. (19) approaches zero and then the temperature of the product at the 
boundary of the zones proves to be a function only of ~h and ~c/~h = ~c/a h. For larger 
values of ~h the conditions at the entrance to the heating chamber no longer affect th". 

By equating the derivative dth/dx found from (9) to zero, after transformations we find 
the distance Xop t from the entrance to the heating chamber which corresponds to the maximum 
temperature of the product: 

Xop,= 1 h 

Calculations show that in all cases (if holding at the heating temperature is not re= 
quired) it is inadvisable to have ~h larger than 3-5, since at these values the maximum tem- 
perature of heating of the product is already almost equal to the temperature of the heating 
medium. It is seen from Fig. 2 that the presence of a heating zone decreases the temperature 
gradient in the product during cooling more markedly, the larger ~o, although with the values 
of the parameters ~h, ~h, ~c, and ~c which are usual in practice this effect is small and only 
noticeable in the immediate vicinity of the dividing wall�9 
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Fig. 2. Effect of parameters 6 h and 6 c on the cooling rate 
at the start of the cooling zone and the optimum length of 
the heating zone in this case: i) 6h = 6c = i.~, 6h/*h = 
~c/$c = 200, t h' = tinit = 20~ t~ = 1220"C, t c = 20~ 2) 

6h = 1 .5  and 6Cb 10, 6 h / , h  200, 8c /~c  30, t h '  

tinit = 20~ th = 1220~ tb c = 20~ 
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Fig. 3. Dependence of Oh" on the param- 

eter $c: l)*c = ~h; 2)*h = 0; 3),h = 2; 
4), h = 5; 5)$h = i0; 6),h = 20. In all 
cases s is equal to zero. Oh" = 

(t b t ")/(t b -- tbc ) 
h 

o 
_!__ 

Fig. 4. Dependence of 0 c' on the dimen- 
sionless thickness As of the dividing 
wall for different parameters ~h and ~c: 

i) ~h = ~c = 2; 2) ~h = ~c = i0; 3) ~h = 

2,~c = 5. e' =c (t~-- t~)/(t~ -- t~). 

Let us analyze the effect of the thickness s of the dividing partition. Since in the 
majority of cases of practical interest the conditions at the entrance to the heating chamber 
and at the exit from the cooling Chamber do not alter the effect connected with the thermal 
conduction of the product, we can use the solutions of Eqs. (I) and (2) for heating and cool- 
ing chambers of infinite lengths ~h and ~c with the usual boundary conditions (t h = th" at 
x h = 0; t c = t c' at Xc = 0; the temperatures are finite at x h =--= and x c = ~): 

O h = ~  exp [ - 1 A x h ( l @ l j H - ) ] 2  " , (21) 

Oc=Ocexp ~ 

Here x h i s  r eckoned  from the  l e f t  w a l l  o f  the  p a r t i t i o n  and x c from the  r i g h t  w a l l .  The tem- 
p e r a t u r e  d i s t r i b u t i o n  i n  the  p r o d u c t  i n  t he  s e c t i o n  of  t he  d i v i d i n g  w a l l  of  t h i c k n e s s  s (F ig .  
1) i s  d e s c r i b e d  by Eq. (23) ,  o b t a i n e d  from (3) w i t h  the  former  boundary  c o n d i t i o n s  ( t  s = t h "  
a t  x s = 0 and t s = t c '  a t  x s = s ) :  

ts = (~ - -  ~)expAx~ + t~expAs--  t~ 
exp A s - - I  (23) 

As the additional boundary conditions needed for the determination of th" and t c' we use, as 
earlier, the equality of derivatives 

dt:h I = dt8 ; , dt8 xs=s= dto Xh= (24) 
dx Xh=O dx x~=o' dx dx o 
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Differentiating (21), (22), and (23), with respect to Xh, Xc, and Xs, respectively, equating 
the derivatives in accordance with (24), and solving the system of equations obtained rela- 
tive to th" and tc' , we find 

0; = _ t.- 4 t --tb=VN+1 
C 

- i 

1 

expAs + l ( v f f  + 1)(exp As-- l )  -~1 
(25) 

b 
0c - 9c th-- t c | (26) 

1 K C - - 1  exp (--  As) @b -- ~ = I q-~ (VC--- I) [I --exp(--As)] + VH q- I 

If the thickness of the dividing wall between zones s § O, we will have 

From F i g .  3, p l o t t e d  f o r  the  c a s e  of  s = 0, i t  i s  seen  t h a t  w i t h  an i n c r e a s e  in  the  com- 
p l e x  ~c ,  i n  t he  h e a t - t r a n s f e r  c o e f f i c i e n t  i n  the  c o o l i n g  chamber in  p a r t i c u l a r ,  and w i t h  the  
v a l u e  of  t h e  p a r a m e t e r  ~h c o n s t a n t ,  t h e  t e m p e r a t u r e  th"  of  t h e  p r o d u c t  a t  t he  b o u n d a r y  o f  
s e p a r a t i o n  o f  the  chambers  d e c r e a s e s  m o n o t o n i c a l l y ,  t he  s t r o n g e r , t h e  s m a l l e r  t h e  v a l u e  of  ~h" 
I t  i s  i n t e r e s t i n g  to n o t e  t h a t  i t  a l s o  d e c r e a s e s  w i t h  a s i m u l t a n e o u s  i n c r e a s e  in  t he  h e a t -  
exchange  i n t e n s i t y  in  b o t h  chambers ,  when ~h = ~c" Th i s  r e s u l t  becomes more o b v i o u s  ( f o r  an 
i n f i n i t e  h e a t i n g  chamber i n  which  the  t e m p e r a t u r e  o f  t h e  p r o d u c t  f a r  in  f r o n t  o f  t he  p a r t i -  
t i o n  r e a c h e s  t h e  v a l u e  t~)  i f  one c o n s i d e r s  t h a t  an i n c r e a s e  i n  ~ c o r r e s p o n d s  no t  o n l y  to  an 
i n c r e a s e  i n  r  b u t  a l s o  to  a d e c r e a s e  i n  t he  complex Oc~w. For t he  v a l u e s  of  ~h and ~c most  
often encountered in practice the difference between th ~ and t~ when s = 0 is small. 

It is completely obvious that the difference between th" and t~ will be even less with 
an increase in the thickness of the dividing wall. The difference between th" and t c' in- 
creases in this case, however. It is seen from Fig. 4 that with an increase in the thickness 
of the wall (the dimensionless parameter As) the temperature of the product to the right of 
its boundary decreases the more strongly, the larger 9c- The temperature distribution in the 
wall can be constructed from Eq. (23). 

By comparing the rate of cooling of the product calculated in this way with the thermo- 
kinetic curves of the metal from which it is made it is not hard to estimate whether this 
rate is sufficient for the hardening of the product and to choose the conditions under which 
the chilling of the metal upon the transition from the heating chamber to the cooling chamber 
will not adversely affect the properties of the hardened product. 

NOTATION 

A = cpw/%; B h = ~hP/IF; B c = ~cP/IF; c, specific heat capacity; P, perimeter of cross 
section of product; Xh, Xc, Xs, current coordinates in heating and cooling chamhers and in 
dividing wall; w, velocity of movement of product; tinit , th' , th, t~ ax, th", ts, tc', tc, 
temperatures of product initially, at entrance to heating chamber, currently in heating cham- 
ber, of maximum heating, at end of heating zone, in dividing wall, at start of cooling zone, 

' ' ~ ' ~c' excess and currently in cooling zone; t~, t~, temperatures of beds; o h ' Oh, Oh" c ' 

= th" -- t ' temperature drop in product in section of dividing wall; O b = temperatures; 0w a c ' 
b b 

t h -- tc, difference between temperatures of fluidized beds; ah' ac' coefficients of heat ex- 

change between product and bed in the heating and cooling chambers, respectively; ~, X, and 
= B/A 2, dimensionless parameters; 8h" , dimensionless temperature at end of heating chamber 

and at division of zones; 8c' , dimensionless temperature at start of cooling zone;l, coeffi- 
cient of thermal conductivity of product; p, density of product. 

i. 

2. 

3. 
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